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The Cover Letter

Dear Mr. James:
The paper presented is the work of my twelve year old boy who
took more than a year to gather the courage to submit it for
editorial scrutiny. You may be interested to know that when my
son first received a subscription to Mathematics Magazine
about two and a half years ago, he was aghast to note that he
couldn’t understand a single thing in it. With each successsive
issue, however, his understanding unfolded (he is a self-taught
mathematician) until now he awaits each issue with eagerness,
and recently was able to submit his solution to one of the
Proposals published in your last issue. He considers his
subscription to Mathematics Magazine one of the finest
presents he ever received!
Sincerely yours, Sylvia Bergman
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George Bergman

Born 22 July 1943
Attended Stuyvesant High School in New York City
Got his Ph. D. in 1968 from Harvard under John Tate (my
thesis grand-advisor!)
Was a professor at Cal-Berkeley (now retired)
Published 2 books and over 100 papers (algebra and
mathematical logic)
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Bergman’s Opening

The reader is probably familiar with the binary system and the
decimal system and probably understands the basis for any
others of that type, such as the trinary or duodecimal. However,
I have developed a system that is based, not on an integer, or
even a rational number, but on the irrational number τ (tau),....

Matt DeLong A Number System with Golden Base



13/85

Introduction
Background Material

Representations in the τ system
Arithmetic in the τ system

Reflections

Bases
Tau

Definition

Suppose that the natural number b > 1 is the base
The digits are natural numbers between 0 and b − 1
The number (anan−1an−2 . . . a0)b equals
anbn + an−1bn−1 + an−2bn−2 + · · ·+ a0b0

Using a dot to divide the digits, one can also write fractions
In general,

(anan−1 . . . a1a0.c1c2c3 . . . )b =
n∑

k=0

akbk +
∞∑

k=1

ckb−k .

Matt DeLong A Number System with Golden Base
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Base 10

4327

means

4 · 103 + 3 · 102 + 2 · 101 + 7 · 100
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Binary

1011001012 =?10
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Binary

1011001012

means

1·28+0·27+1·26+1·25+0·24+0·23+1·22+0·21+1·20 = 35710
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Hexadecimal

16516 =?10
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Hexadecimal

16516

means

1 · 162 + 6 · 161 + 5 · 160 = 35710

Matt DeLong A Number System with Golden Base



19/85

Introduction
Background Material

Representations in the τ system
Arithmetic in the τ system

Reflections

Bases
Tau

Base 10 to Binary

12210 =?2
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Base 10 to Binary

The binary representation of 12210 is 11110102.
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Base 10 to Hexadecimal

17012810 =?16
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Base 10 to Hexadecimal

The hexadecimal representation of 17012810 is 2989016.
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Definition

Let τ equal the positive solution to x2 − x − 1 = 0.
Thus, τ = (1 +

√
5)/2.

Approximating, τ ≈ 1.61803.
Note that τ2 = τ + 1.
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AKA

τ = φ

AKA “The Golden Ratio”
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Distinctive Property

“In order to understand this system, one must comprehend
two peculiarities of the number τ .”
They are based on tau’s distinctive property that

τn = τn−1 + τn−2.
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Peculiarity One

1
1
,
2
1
,
3
2
,
5
3
,
8
5
,
13
8
,
21
13
, · · · −→?

1,2,1.5,1.666 . . . ,1.6,1.625,1.615382 . . . , · · · −→?
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Peculiarity One

1
1
,
2
1
,
3
2
,
5
3
,
8
5
,
13
8
,
21
13
, · · · −→ τ

In other words, If fn is the n-th term in the Fibonacci Sequence,
setting f1 = 1, f2 = 1, then

lim
n→∞

(fn+1/fn) = τ

Matt DeLong A Number System with Golden Base
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Peculiarity One

Theorem
limn→∞(fn+1/fn) = τ

Proof.
1 The defining property of the squence is fn+1 = fn + fn−1.
2 Using this, fn+1/fn = (fn + fn−1)/fn
3 Simplifying, fn+1/fn = 1 + 1

fn/fn−1

4 Let x = limn→∞(fn+1/fn). Then, x = 1 + 1/x .
5 I.e., x2 = x + 1. Since x is positive, x = τ .

Matt DeLong A Number System with Golden Base
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Peculiarity Two

Any integral power of τ can be expressed in the form

τn = Aτ + B,

where A and B are numbers in the Fibonacci Sequence.
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Peculiarity Two

τ1 = 1τ + 0
τ2 = 1τ + 1
τ3 = τ2 + τ1 = (1τ + 1) + (1τ + 0) = 2τ + 1
τ4 = τ3 + τ2 = (2τ + 1) + (1τ + 1) = 3τ + 2
τ5 = τ4 + τ3 = (3τ + 2) + (2τ + 1) = 5τ + 3
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Peculiarity Two

Theorem
For any positive integer n, τn = fnτ + fn−1.

Proof.
1 We know, τn = τn−1 + τn−2.
2 By induction, we have τn = (fn−1τ + fn−2) + (fn−2τ + fn−3).
3 Rearraning, τn = (fn−1 + fn−2)τ + (fn−2 + fn−3).
4 By the defining property of the sequence,
τn = fnτ + fn−1.
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Negative Powers of τ

“Can this be applied to negative powers of τ? We don’t know
any Fibonacci numbers before 1, but it is easy to find them.”
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Fibonacci Numbers Before 1

. . . ,−21,13,−8,5,−3,2,−1,1,0,1,1,2,3,5,8,13,21, . . .
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Fibonacci Numbers Before 1

Theorem

For any positive integer y, f−y = (−1)y+1fy .

Proof.
Sketch....
Use the defining property of the Fibonacci Sequence.
Prove by induction.

Matt DeLong A Number System with Golden Base
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List of Powers of τ
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Symbols and Rule

Like the binary system, the only symbols are 0 and 1
Unlike the binary system, it has the rule 100 = 011
This is a general rule; place the decimal point anywhere.
This is a restatement of τn = τn−1 + τn−2.
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Trivial Examples

Obviously, 010 = 0τ .
Also, 1 = τ0, so 110 = 1τ .
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Other Examples

We know,

τ1 = 1τ + 0 and τ−2 = −1τ + 2.

Therefore,

τ1 + τ−2 = (1τ + 0) + (−1τ + 2) = 2.

In other words,

210 = 10.01τ .

Matt DeLong A Number System with Golden Base
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Other Examples

We know,

τ2 = 1τ + 1 and τ−2 = −1τ + 2.

Therefore,

τ2 + τ−2 = (1τ + 1) + (−1τ + 2) = 3.

In other words,

310 = 100.01τ .

Matt DeLong A Number System with Golden Base
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Other Examples

We know,

τ0 = 1 and τ2 + τ−2 = 3.

Therefore,

τ2 + τ−2 + τ0 = 4.

In other words,

410 = 101.01τ .

Matt DeLong A Number System with Golden Base
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Nonuniqueness of Representations

210 = 10.01τ
= 1.11τ
= 10.0011τ
= 10.001011τ
= 1.101011τ

Matt DeLong A Number System with Golden Base
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Simplest Form

The form in which there are no two 1s in succession.
Therefore, cannot be acted upon by simplification
(011 = 100).
To convert a number to its simplest form, repeatedly
simplify the leftmost pair of consecutive 1s.

Matt DeLong A Number System with Golden Base
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Simplification Example

100101.111001 = 100110.011001
= 101000.011001
= 101000.100001
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A τ -representation is Always Possible

Theorem
For every positive integer n, there is a corresponding finite
sequence of distinct integers k1, k2, . . . , km such that
n = τ k1 + τ k2 + · · ·+ τ km .

Bergman implicitly makes this claim, and demonstrates a
method that should always work.
C. Rousseau (1995) published a follow-up article in
Mathematics Magazine (“The Phi Number System
Revisited”) in which he proves the theorem (and a little bit
more) using some algebraic number theory.
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Getting from n to n + 1

Put n in its simplest form.
Convert n into the form in which there is a 0 in the units
column.
Add a 1 to the units column to produce n + 1.
Put n + 1 in its simplest form.

Matt DeLong A Number System with Golden Base
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Example

410 = 101.01τ
= 101.0011τ
= 100.1111τ

Now add 1 to get 5.

510 = (100.1111 + 1)τ
= 101.1111τ
= 110.0111τ
= 1000.0111τ
= 1000.1001τ

Matt DeLong A Number System with Golden Base
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Method of Conversion

If there is 0 in the units column, you are finished.
If there is 1, look in the τ−2 column. If there is 0 there,
expand the 1 and you are done.
If there is 1, look in the τ−4 column. If there is 0 there,
expand the 1 in the τ−2 column and the 1 in the units
column and you are done.
If there is 1, look in the τ−6 column. If there is 0 there,
expand the 1 in the τ−4 column, the 1 in the τ−2 column
and the 1 in the units column and you are done.
Etc.
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If there is 1, look in the τ−4 column. If there is 0 there,
expand the 1 in the τ−2 column and the 1 in the units
column and you are done.
If there is 1, look in the τ−6 column. If there is 0 there,
expand the 1 in the τ−4 column, the 1 in the τ−2 column
and the 1 in the units column and you are done.
Etc.
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What if?

The method fails for 1.01010101 . . . . How can this be
simplified?
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Endless Fractions

The endless fraction 1.01010101 . . . equals 10.

1 + τ−2 + τ−4 + τ−6 + · · · = 1
1− τ−2

=
τ2

τ2 − 1

=
τ + 1
τ

= 1 +
1
τ

= τ
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Exercise

Show that in the Tau System,

1 = 0.10101010 . . . .

(Just as in the decimal system,

1 = 0.999999 . . . .)
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Several Examples
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10010.0101 + 1010.0001 = 100101.001001

9 + 6 = 15
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10010.0101− 1010.0001 =?

11− 6 = 5
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10010.0101− 1010.0001 = 1000.1001
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Multiplication

“Multiplication involves nothing new. We simply place the partial
products as we do in the decimal system, and add.”
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1 0 1 . 0 1
×1 0 0 . 0 1

1 0 0 0 0 0 . 1 0 1 0 0 1
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“Division is quite different in this system, and is, in fact, rather
odd. Thie only things it has in common with ordinary division
are the basic principles behind it, the way the example looks,
and the movement of the ‘decimal point’ to eliminate any
figures to the right of it in the divisor.”
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100000.101001÷ 10.01 = 1010.0001
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Exercise: Prove that no fractions can be terminating in this
system.
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Reflections

It’s never too early to start making your contribution to
mathematics.
You don’t have to win a Fields Medal to have a successful
mathematical career.
Be thankful for those who have encouraged and enabled
your progress in mathematics.
Do your part to encourage others to love the beauty of
mathematics.
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